Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(6): e0010559, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759510

RESUMO

Epigenetic mechanisms are responsible for a wide range of biological phenomena in insects, controlling embryonic development, growth, aging and nutrition. Despite this, the role of epigenetics in shaping insect-pathogen interactions has received little attention. Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we explored the role of the Aedes aegypti histone acetyltransferase CBP (AaCBP) after infection with Zika virus (ZIKV), focusing on the two main immune tissues, the midgut and fat body. We showed that the expression and activity of AaCBP could be positively modulated by blood meal and ZIKV infection. Nevertheless, Zika-infected mosquitoes that were silenced for AaCBP revealed a significant reduction in the acetylation of H3K27 (CBP target marker), followed by downmodulation of the expression of immune genes, higher titers of ZIKV and lower survival rates. Importantly, in Zika-infected mosquitoes that were treated with sodium butyrate, a histone deacetylase inhibitor, their capacity to fight virus infection was rescued. Our data point to a direct correlation among histone hyperacetylation by AaCBP, upregulation of antimicrobial peptide genes and increased survival of Zika-infected-A. aegypti.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Aedes/genética , Animais , Epigênese Genética , Histona Acetiltransferases/genética , Histonas/genética , Mosquitos Vetores , Zika virus/fisiologia
2.
Sci Rep ; 11(1): 19202, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584163

RESUMO

In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions.


Assuntos
Aedes/microbiologia , Imunidade Inata , Wolbachia/imunologia , Aedes/imunologia , Aedes/metabolismo , Animais , Linhagem Celular , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Simbiose/imunologia
3.
J Am Heart Assoc ; 7(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907654

RESUMO

BACKGROUND: NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS: Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.


Assuntos
Sinalização do Cálcio , Cardiopatias/enzimologia , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Calmodulina/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/fisiopatologia , NADPH Oxidase 5/genética , Oxirredução , Rhodnius , Vasodilatação
4.
PLoS Negl Trop Dis ; 9(10): e0004186, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496442

RESUMO

BACKGROUND: Here we report the monitoring of the digestive tract colonization of Rhodnius prolixus by Trypanosoma cruzi using an accurate determination of the parasite load by qPCR coupled with fluorescence and bioluminescence imaging (BLI). These complementary methods revealed critical steps necessary for the parasite population to colonize the insect gut and establish vector infection. METHODOLOGY/PRINCIPAL FINDINGS: qPCR analysis of the parasite load in the insect gut showed several limitations due mainly to the presence of digestive-derived products that are thought to degrade DNA and inhibit further the PCR reaction. We developed a real-time PCR strategy targeting the T. cruzi repetitive satellite DNA sequence using as internal standard for normalization, an exogenous heterologous DNA spiked into insect samples extract, to precisely quantify the parasite load in each segment of the insect gut (anterior midgut, AM, posterior midgut, PM, and hindgut, H). Using combined fluorescence microscopy and BLI imaging as well as qPCR analysis, we showed that during their journey through the insect digestive tract, most of the parasites are lysed in the AM during the first 24 hours independently of the gut microbiota. During this short period, live parasites move through the PM to establish the onset of infection. At days 3-4 post-infection (p.i.), the parasite population begins to colonize the H to reach a climax at day 7 p.i., which is maintained during the next two weeks. Remarkably, the fluctuation of the parasite number in H remains relatively stable over the two weeks after refeeding, while the populations residing in the AM and PM increases slightly and probably constitutes the reservoirs of dividing epimastigotes. CONCLUSIONS/SIGNIFICANCE: These data show that a tuned dynamic control of the population operates in the insect gut to maintain an equilibrium between non-dividing infective trypomastigote forms and dividing epimastigote forms of the parasite, which is crucial for vector competence.


Assuntos
Medições Luminescentes , Imagem Óptica , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real , Rhodnius/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/isolamento & purificação , Animais , Feminino , Trato Gastrointestinal/parasitologia , Trypanosoma cruzi/genética
5.
Biochem Biophys Res Commun ; 467(1): 115-20, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26408905

RESUMO

The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genes de Protozoários , Sistema de Sinalização das MAP Quinases , Proteínas Monoméricas de Ligação ao GTP/genética , Fenótipo , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
6.
Rev Col Bras Cir ; 37(1): 31-8, 2010 Feb.
Artigo em Português | MEDLINE | ID: mdl-20414575

RESUMO

OBJECTIVE: This study aimed to assess the catalase activity after ischemia and reperfusion and to study the changes of this antioxidant in organs located far from the initial insult. METHODS: Eighteen Wistar rats were randomly divided into three groups. 1-Control, 2-Simulation and 3-Ischemia and Reperfusion. In the latter it was done an ischemia of the ileum for 60 minutes followed by reperfusion for 30 minutes. In group 2 only laparotomy was performed. From all animals it was taken segments of the reperfused and non reperfused intestine, as well of the right kidney and lung to be evaluated under light microscopy. Catalase activity was measured in spectrophotometer with a wavelength set to 240 nm. It was used Mann Whitney and Kruskal Wallis statistical tests. RESULTS: There was a significant increase (p <0.05) in the catalase activity not only at small bowel ischemic and non-ischemic segments but also at lungs. However the enzymatic activity decreases in the kidney. In all organs studied at reperfusion group it was found a slight villi derangement, mild congestion and infiltration with inflammatory cells, and areas of pulmonary atelectasis. CONCLUSION: The intestinal oxidative stress in rats causes biochemical changes at distance, with mobilization of antioxidant defense mechanisms in lung, non-ischemic intestinal segment and kidney, with early decrease in this last organ, however, with no relevant cellular damage.


Assuntos
Catalase/metabolismo , Intestino Delgado/enzimologia , Rim/enzimologia , Pulmão/enzimologia , Traumatismo por Reperfusão/enzimologia , Animais , Intestino Delgado/patologia , Rim/patologia , Pulmão/patologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...